

Alternatives to Turbo Roundabouts

Mark Lenters, P.E., Kimley-Horn and Associates, Inc.

What led to the interest in Turbo roundabouts in Europe?

- Radial design without natural entry path tangents between lanes
- Multilane PDO crash incidence was higher than expected
- Uncoordinated designs: geometry, signs, markings
- Predisposed to more control and more devices (like Europe) vs. less (Like the U.K.)

Turbo Roundabout in Europe (2005)

Roundabouts - a state of the art in Germany

Gerstmann

page 9

- Due to interactions of circulating flows with fast vehicles leaving the circle from the inner lane, these twolane exits often are a reason for injury accidents.
- Therefore, multilane roundabouts are not recommended for application in Germany. Especially 2-lane exits are completely banned.

Fig. 9: Typical driver behavior at a compact two-lane roundabout: unused left lane on a two-lane entry

Early Pre-Turbo Multi-Lane Roundabouts In Europe (2000 = 2005

Kimley»Horn

What is prompting the use of Turbo Roundabouts in the U.S.

- Multilane PDO crash incidence was higher than expected
- Uncoordinated designs: geometry, signs, markings
- Predisposed to more control and more devices (like Europe) vs. less (Like the U.K.)
- Very few examples or case studies to date, but lots of enthusiasm.
 Is it a solution looking for a problem?

Entry/Exit Path Alignment (N. America)

Figure 3-29. Entry Path Overlap (Avoid)

Figure 3-30. Multilane Entry Design to Minimize Path Overlap

Without natural entry path design, the response:

Turbo Roundabouts

FHWA is looking into Turbos

First U.S. Turbo Roundabout (Jacksonville, FL)

Geometric design parameters of a turbo-roundabout

Turbo-blocks detail with one to four axes

Kimley»Horn

Source: Transoft

Some Differences in Geometric Design Composition

Turbo

- ► Radial alignment (fits r.o.w. well)
- ► Conformance based design
- ► Poor transitional geometric speed control
- ▶ Wide lanes
- ► Mainly single lane exits
- ▶ Lower capacities
- Constrained for trucks and OSOW
- Fairly rigid constraints on geometric design
- ► Raised dividers place motorcyclists at risk
- ► Consistent speeds near roundabout x-walks

Conventional Multilane

- ▶ Left-offset alignment
- Performance-based Design (lane demands, speed, space, sight)
- Most flexible & adaptable design method deep toolbox
- Relies on all aspects of design (lane configuration, geometry, markings, signs being complementary)
- Fewer constraints on performance-based design
- Inconsistent speeds near roundabout crosswalks

Expanding the Toolbox

Left Offset

Two Lane Roundabout Toolbox

More Radial

Context: Retrofit a crash-prone RAB or address difficult geometry and R/W in design (skews)

Buffered Roundabouts Spiraled

Context: Fully radial for R/W preservation & difficult geometries

Fast Path Discouraged but still left-offset

Consistent Speeds at Crosswalks = Predictability

Fast Path – Mitigations (if needed)

Buffered Lanes Roundabout Components

Kimley»Horn

Case Study

- Multi-Lane Roundabout
 - Rural / Suburban
 - Approximately 5 years operations
 - Higher than expected crashes
- In-Service Review
 - Drones assisted in diagnostics
 - Tiered improvements
- Tier 1 Improvement
 - Buffered Lanes
 - Sign modifications
 - Completed May 2022

Recent Collision History

Figure 1: Location of Historical Collisions Based on Collision Type and Injury Severity Note: Information on collision location was not available for collision numbers 19-005446 (broadside with no injury) and 19-006599 (hit object with no injury)

Figure 9: Estimated Fastest Paths
Figure 3: Driving Patterns

% Veh Over Target	7.3%	19.2%	4.9%	5.1%
Avg Thru Speed	24.8	21.9	23.0	20.6

AFTER Conditions

85th Percentile Speeds Reduced

FHWA Pooled Fund Study 2020 - Summary of Key Findings

- ► Key Crash Patterns of Interest
 - ➤ Drivers in the outside entering lane failing to yield to drivers in the inside circulating lane
 - ▶ Drivers making left-turns from the incorrect outside lane
 - ▶ Drivers maing right-turns from the incorrect inside lane
 - ▶ Drivers straddling lanes and crossing lanes lines when entering, circulating or exiting